

The Future of

Neil Gehrels **NASA-GSFC**

Penn State May 1-2, 2007

Swift Goals & Capabilities

- \Box Swift goals for "prime mission":
 - determine the origin of GRBs of all types
 - determine how the blastwave evolves and interacts with surroundings
 - use GRBs to study the early universe
 - perform a sensitive hard X-ray survey of the sky
- □ Broad capabilities listed at 2006 Senior Review
 - GRB sensitive detection & rapid follow-up
 - rapid response astronomy
 - flexible multiwavelength campaigns
 - surveys

GRB 070420

BAT

XRT

UVOT

Observing Time

Scientific Productivity

- □ E-mail survey performed of approved TOO observations
- □ Combined with lists of paper compiled for GRBs and fill-ins/surveys
- ☐ The Numbers:

	GCNs, ATELS, CBETs, IAUCs	Publications	Observing Time	Publications per Msec
GRBs	880 - 2000	200+	34 Msec	5.8+
TOOs	48	29	6 Msec	4.8
Fill-ins & Surveys	-	~30	10 Msec	3.0

□ Conclusions:

- GRB observations highly productive. Likely to decrease, but stay large
- TOO observations are also productive and likely to remain steady/incease
- Fill-ins and surveys have not produced many papers. Could be a concern, or could be that these projects have longer-term payoffs

TOO Categories

- □ ~120 responses to TOO e-mail survey out of 259 TOOs
- □ Comparison of different TOO categories:

	ATELS, CBETs, IAUCs	Publications	Total	Fraction witth Publications or ATELS
galactic accretion	29	11	~100	0.40
supernovae	13	5	~50	0.26
novae, CVs	3	2	~20	0.25
AGN	-	8	~40	0.20
other (ULX, UNID, SNR, pulsar)	-	3	~25	0.12

□ Conclusions:

- no weak areas found
- ~25% of TOOs produce significant results

Sun Angle

- □ Some observatories benefit from GRBs at ~90° to sun (XMM, Spitzer)
- ☐ Most follow-ups greatly benefit from large angle (anti-sun GRBs)
 - High-z and short bursts particularly require difficult observations
 - More likely to have multiple telescope follow-up and rapid largetelescope follow-up when GRB is far from dawn & dusk
- □ Swift must have some observing time in the sunward hemisphere due to orbit
- □ Swift ops team working toward giving more observing time in anti-sun region
- □ Costs of anti-sun biasing:
 - More restrictive TOO acceptance criteria
 - GRBs near sun have XRT/UVOT observations terminated early

Typical Sun Angle Pre-March '07

Sun Angle Experiment - Mar-Apr '07

- Move 90° peak to higher angle
- Still have significant 90° time
- 31% GRBs at >8 hr Mar-Apr '07
- 14% GRBs at >8 hr Jan-Dec '06

BAT Thresholds

- □ Can we learn more about GRBs by lowering the BAT thresholds?
- □ BAT trigger is complex with hundreds of rates and time domain trigger criteria plus image-only triggering
- □ Normal trigger requires ~7 sigma rate increase **and** 7.0 sigma image
- □ Proposal is to experiment with significantly lower image and/or rate threshold
 - High false trigger and slew rate
 - Real GRBs recognized by X-ray afterglows
 - Block GCN Notices for low significance events
 - AT time set at 2ks for low significance events
- □ What to gain?
 - Weak long bursts underluminous class, high redshift
 - Weak short bursts but may be hard to work with

Fluence vs Flux for All BAT GRBs

BAT Fluence and Flux Limits

BAT Fluence and Flux Limits

Conclusions

- □ Swift is highly productive across a broad reach of science disciplines
- □ Feedback desired during workshop on following questions:
 - Is a "bimodal" sun angle distribution preferable to peak at 6 hrs?
 - What can be gained from detecting weaker GRBs? Is it worth some disruption in normal ops and a potentially higher false trigger rates?
 - What is needed for further progress on short and high-z GRBs?
 - What is the best balance between GRBs and TOOs?
 - How much time should be devoted to GLAST follow-up and support?